Allergic airway inflammation induces the migration of dendritic cells into airway sensory ganglia
نویسندگان
چکیده
BACKGROUND A neuroimmune crosstalk between dendritic cells (DCs) and airway nerves in the lung has recently been reported. However, the presence of DCs in airway sensory ganglia under normal and allergic conditions has not been explored so far. Therefore, this study aims to investigate the localisation, distribution and proliferation of DCs in airway sensory ganglia under allergic airway inflammation. METHODS Using the house dust mite (HDM) model for allergic airway inflammation BALB/c mice were exposed to HDM extract intranasally (25 μg/50 μl) for 5 consecutive days a week over 7 weeks. With the help of the immunohistochemistry, vagal jugular-nodose ganglia complex (JNC) sections were analysed regarding their expression of DC-markers (MHC II, CD11c, CD103), the neuronal marker PGP 9.5 and the neuropeptide calcitonin gene-related peptide (CGRP) and glutamine synthetase (GS) as a marker for satellite glia cells (SGCs). To address the original source of DCs in sensory ganglia, a proliferation experiment was also carried in this study. RESULTS Immune cells with characteristic DC-phenotype were found to be closely located to SGCs and vagal sensory neurons under physiological conditions. The percentage of DCs in relation to neurons was significantly increased by allergic airway inflammation in comparison to the controls (HDM 51.38 ± 2.38% vs. control 28.16 ± 2.86%, p < 0.001). The present study also demonstrated that DCs were shown to proliferate in jugular-nodose ganglia, however, the proliferation rate of DCs is not significantly changed in the two treated animal groups (proliferating DCs/ total DCs: HDM 0.89 ± 0.38%, vs. control 1.19 ± 0.54%, p = 0.68). Also, increased number of CGRP-positive neurons was found in JNC after allergic sensitisation and challenge (HDM 31.16 ± 5.41% vs. control 7.16 ± 1.53%, p < 0.001). CONCLUSION The present findings suggest that DCs may migrate from outside into the ganglia to interact with sensory neurons enhancing or protecting the allergic airway inflammation. The increase of DCs as well as CGRP-positive neurons in airway ganglia by allergic airway inflammation indicate that intraganglionic DCs and neurons expressing CGRP may contribute to the pathogenesis of bronchial asthma. To understand this neuroimmune interaction in allergic airway inflammation further functional experiments should be carried out in future studies.
منابع مشابه
Inactivated Mycobacterium phlei inhalation ameliorates allergic asthma through modulating the balance of CD4+CD25+ regulatory T and Th17 cells in mice
Objective(s): Th2 response is related to the aetiology of asthma, but the underlying mechanism is unclear. To address this point, the effect of nebulized inhalation of inactivated Mycobacterium phlei on modulation of asthmatic airway inflammation was investigated. Materials and Methods: 24 male BALB/c mice were randomly divided into three groups: control group (Group A), asthma model group (G...
متن کاملTargeting TSLP With shRNA Alleviates Airway Inflammation and Decreases Epithelial CCL17 in a Murine Model of Asthma
Airway epithelium defends the invasion from microorganisms and regulates immune responses in allergic asthma. Thymic stromal lymphopoietin (TSLP) from inflamed epithelium promotes maturation of dendritic cells (DCs) to prime Th2 responses via CCL17, which induces chemotaxis of CD4(+) T cells to mediate inflammation. However, few studies have investigated the regulation of epithelial CCL17. In t...
متن کاملThe Wnt/β-catenin pathway attenuates experimental allergic airway disease.
Signaling via the Wnt/β-catenin pathway plays crucial roles in embryogenesis and homeostasis of adult tissues. In the lung, the canonical Wnt/β-catenin pathway has been implicated in remodeling processes, development of emphysema, and fibrosis. However, its relevance for the modulation of allergic responses in the lung remains unclear. Using genetically modified mice with lung-specific inducibl...
متن کاملA pathogenic role for the integrin CD103 in experimental allergic airways disease
The integrin CD103 is the αE chain of integrin αEβ7 that is important in the maintenance of intraepithelial lymphocytes and recruitment of T cells and dendritic cells (DC) to mucosal surfaces. The role of CD103 in intestinal immune homeostasis has been well described, however, its role in allergic airway inflammation is less well understood. In this study, we used an ovalbumin (OVA)-induced, CD...
متن کاملCockroach protease allergen induces allergic airway inflammation via epithelial cell activation
Protease allergens are known to enhance allergic inflammation but their exact role in initiation of allergic reactions at mucosal surfaces still remains elusive. This study was aimed at deciphering the role of serine protease activity of Per a 10, a major cockroach allergen in initiation of allergic inflammation at mucosal surfaces. We demonstrate that Per a 10 increases epithelial permeability...
متن کامل